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Abstract Numerical solutions are presented for steady two-dimensional symmetric flow past a
parabolic cylinder embedded in porous media. For this study, the full Navier–Stokes equations
(combined with the Brinkman–Forchheimer-extended Darcy model) and energy equation in
parabolic coordinates were solved. A second order accurate finite difference scheme on a non-
uniform grid was used. A wide range of Reynolds number (Re) is studied for different values of
Prandtl number (Pr). It is found that the pressure, skin friction and Nusselt number decreases as
the Darcy number (Da ) decreases and/or the Inertia parameter (L) increases.

Nomenclature
Cf = Skin friction coefficient (tw/rU 2

1)
Cpf = Specific heat of the fluid
D = Reference length
Da = Modified Darcy number (rU 2

1Kp/nf
2)

F = Empirical constant in the second-order
resistance

f = Modified stream function (c/z )
g = Modified vorticity ( 2 (z 2+h 2)v/z )
h = Modified temperature

( 2 (z 2+h 2)u/z )
ho = Heat transfer coefficient
k = Thermal conductivity
K = Permeability
kr = The conductivity ratio (ke/kf )
Nu = Nusselt number (hoD/kf )
p* = Dimensional local pressure
p = Non-dimensional local pressure

(( p* 2 p1)/rU 2
1)

P = Modified non-dimensional local press-
ure ( p 2 (h/(z 2+h 2))g(0,Re1/2))

Pr = Prandtl number (nf/af )
Pre = Effective Prandtl number (nf/ae )
R = Nose radius of curvature

Re = Reynolds number based on the nose
radius of curvature (RU1/nf )

T = Temperature
U1 = Free-stream velocity
(u,v ) = Velocity component in (x,y ) directions,

respectively
(x,y ) = Cartesian coordinates
Xmax = The surface maximum non-dimen-

sional x 2 coordinate value
(xmax/(nf/U1))

VR = Viscosity ratio (ne/nf )
Greek symbols

a = Thermal diffusivity
e = Porosity
L = Inertia parameter (Fpe/Kp

1/2)
�L = Modified inertia parameter (nfL/U1)
n = Kinematic viscosity
u = Non-dimensional temperature

((T 2 T1)/(Tw 2 T1))
r = Fluid density
tw = Shear stress at the wall (m(›u/› y )w )
c = Stream function
v = Vorticity
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Introduction
The problem of flow over parabolic bodies is of importance in properly
determining the local solutions near leading edges in more complicated
problems. Those who study numerical solutions of the Navier–Stokes
equations of such flows usually ignore the singularities that exist at the leading
edge. One of the earliest analyses was presented by Van Dyke (1962) who
considered that there is no singularity at the nose of the parabolic body, as in
the case of the semi-infinite flat plate. On the parabolic body, the flow proceeds
without separation from stagnation point flow at the nose to Blasius flow
farther downstream. Dennis and Walsh (1971) obtained numerical solution for
the steady symmetric viscous flow past a parabolic cylinder in a uniform
stream. They obtained a solution using two-dimensional finite-difference
approximations to the partial differential equations for the stream function and
vorticity. Their solutions cover the range of Reynolds number (based on the
nose radius of the cylinder) from 0.25 to 1. Davis (1972) obtained a numerical
solution of the Navier–Stokes equations for symmetric laminar incompressible
flow past a parabola. The governing equations were solved numerically using
an Alternating Direction Implicit (ADI) method. To remove the singularity
from the problem in the limit as Reynolds number goes to zero, Davis
introduced a set of dependent and independent variables, which seem ideally
suited to the problem.

Haddad and Corke (1998) have numerically studied the effect of curvature of
the leading edge on the boundary-layer receptivity of a two-dimensional
laminar incompressible flow over parabolic bodies. Haddad et al. (2000)
presented a numerical solution of Navier–Stokes and energy equations for
laminar, steady and two-dimensional symmetric flow past a parabolic cylinder
in a uniform stream parallel to its axis. The full Navier–Stokes equations and
energy equation in parabolic coordinates were solved using finite difference
technique. A wide rang of Reynolds numbers is studied for different values of
Prandtl number.

The problem of forced convection heat transfer over a flat plate embedded in
a medium totally or partially filled with porous material is investigated by
Vafai and Tien (1981), Vafai (1984), Kaviany (1987), Vafai and Kim (1990) and
Huang and Vafai (1994). However, these studies presented solutions for the
approximate boundary layer governing equations, which are valid for locations
far away from the leading edge.

DT = Temperature difference (Tw 2 T1)
(z,h ) = The parabolic coordinates

Subscripts
e = effective
f = fluid

p = porous
s = solid matrix of the porous material
w = wall condition
1 = free-stream condition
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The objective of the present work is to study the effect of the presence of an-
isotropic solid matrix on the hydrodynamic and heat transfer (forced
convection) characteristics of the flow over a parabolic body using the finite
difference technique. The leading-edge region was not excluded but rather was
part of the solution domain. Using parabolic coordinates, the natural extension
of the flat plate to other body shapes is the parabolic cylinder, which is the
focus of the present investigation. The formulation allows the flat plate solution
to arise as a special case when Reynolds number based on the nose radius of
curvature equals to zero.

Formulation of the problem
Governing equations
Figure 1 shows a schematic diagram for the physical problem under
consideration. It is assumed that the flow is steady, two-dimensional, laminar
and incompressible. The parabolic-body is surrounded by a porous medium, as
shown in the figure. The equation of the surface of the parabolic-body is given
by

xðyÞ ¼
1

2R
ðy2 2 R 2Þ ð1Þ

where R is recognized as the nose radius of curvature.
The conservation equations (in dimensional form) of the flow in a porous

medium are based on a general flow model. This generalized flow model is also
known as the Brinkman–Forchheimer-extended Darcy model (Vafai and Tien,
1981; Kaviany, 1995):

›u

›x
þ
›v

›y
¼ 0 ð2Þ

Figure 1.
Schematic diagram
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u
›u

›x
þ v

›u

›y
¼ 2

1

rf

›p

›x
2

nf

Kp
u 2 Lu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
þ ne

›2u

›x2
þ

›2u

›y2

� �
ð3Þ

u
›v

›x
þ v

›v

›y
¼ 2

1

rf

›p

›y
2

nf

Kp
v 2 Lv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
þ ne

›2v

›x2
þ

›2v

›y2

� �
ð4Þ

u
›T

›x
þ v

›T

›y
¼ ae

›2T

›x2
þ
›2T

›y2

� �
ð5Þ

where L is the inertia parameter

L ¼
Fp1ffiffiffiffiffiffi

Kp

p ð6Þ

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ø u if u @ v

Also ae is defined as

ae ¼ ke=1rf Cpf ; ke ¼ ksð1 2 1Þ þ 1kf ð7Þ

where kf, rf and Cpf refer to the thermal conductivity, density and heat capacity
of the fluid, respectively.

Equations (2)–(5) are obtained by Vafai and Tien (1981) using the local
volume averaging and matched asymptotic expansion techniques under the
assumption of two-dimensional, steady, isotropic, incompressible and
homogeneous flow through a fluid-saturated porous medium.

It has been found that setting the effective viscosity (ne ) of the fluid-
saturated porous medium equal to the viscosity of the fluid provides good
agreement with experimental data (Lundgern, 1972; Neale and Nader, 1974).
This approximation is adopted in the present work.

Introducing the stream function (c ) and the vorticity (v ) such that

u ¼
›c

›y
; v ¼

›c

›x
; v ¼

›v

›x
2

›u

›y
ð8Þ

the stream-function, vorticity and energy equations in terms of c, v and T are
then in the form:

›2c

›x2
þ

›2c

›y2
¼ 2v ð9Þ
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ne
›2v

›x2
þ

›2v

›y2

� �
þ

›c

›x

›v

›y
2

›c

›y

›v

›x

¼
nf

Kp
þ L

›c

›x

� �
v2 L

›c

›y

›2c

›y2
þ

›c

›x

›2c

›x›y

� �
ð10Þ

ae
›2T

›x2
þ

›2T

›y2

� �
þ

›c

›x

›T

›y
2

›c

›y

›T

›x
¼ 0 ð11Þ

In order to convert the above equations into a non-dimensional form, the
following dimensionless variable are introduced. (For convenience, the
superscript (*) is used only in the definitions of the non-dimensional variables
to indicate dimensional quantities.)

x ¼
x�

ðnf=U1Þ
; y ¼

y�

ðnf=U1Þ
; c ¼

c�

nf

; v ¼
v�

U 2
1=nf

� � ;

u ¼
T �2T1

Tw 2 T1

ð12Þ

The non-dimensional form of the governing equations is then

cxx þ cyy ¼ 2v ð13Þ

ne

vf

ðvxx þ vyyÞ þ cxvy 2 cyvx ¼
1

Da
þ �Lcy

� �
v2 �Lðcycyy

þ cxcxyÞ ð14Þ

1

Pr
ðuxx þ uyyÞ þ cxuy 2 cyux ¼ 0 ð15Þ

Da ¼
U 2

1Kp

n2
f

; �L ¼
nfL

U1

; Pre ¼
nf

ae
ð16Þ

In order to transform the above equations from cartesian variables (x,y ) to
parabolic variables (z,h ), the relation between the two coordinate systems is
required. The non-dimensional independent variables z and h (parabolic
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coordinates) are related to the non-dimensional x and y (Cartesian coordinates)
by

x þ iy ¼
ðzþ ihÞ2

2
ð17Þ

where i here is
ffiffiffiffiffiffiffi
21

p
.

In order to remove the singularity at the leading-edge of the flat plate case,
we follow Davis (1972) and introduce the new variables f, g and h which are
related to c, v and u by

c ¼ zf ðz;hÞ; v ¼ 2
z

ðz2 þ h2Þ
gðz;hÞ; u ¼ 2

z

ðz2 þ h2Þ
hðz;hÞ ð18Þ

(The Stokes solution near the nose of a parabola shows that C = Az(h 2 R 1/2)2,
where A is an undetermined constant. From this expression the vorticity v is
found to be 2 2Az/(z 2+h 2).)

The new dependent variables are then governed by the following equations

f hh 2 g þ f zz þ
2

z
f z ¼ 0 ð19Þ

ne

nf

ghh þ f þ z f z 2
4h

z2 þ h2

ne

nf

� �
gh

þ
z2 2 h2

z2 þ h2
f h 2

2h

z2 þ h2
ð f þ z f zÞ

� �
g 2 z f h þ

4

z2 þ h2

ne

nf

� �
gz

2
ðz2 þ h2Þ

Da
g 2 �L½hð f þ z f zÞ þ z2f h�g

2 �Lzð f þ z f z þ h f hÞ f zh

2 �L
2h

z2 þ h2
h2f 2

z 2 f 2
� �

þ z2f h f hh

�

þ f þ z f z 2 h
z2 2 h2

z2 þ h2

� �
f h

� �
f h 2

4zh

z2 þ h2
ff z

�

2 �L hðf þ zf zÞf zz þ
2h

z
ff z

� �
þ

ne

nf

gzz þ
2

z
gz

� �
¼ 0

ð20Þ
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hhh þ ðf þ zf zÞPre 2
4h

z2 þ h2

� �
hh

þ
z2 2 h2

z2 þ h2
f h 2

2h

z2 þ h2
ðf þ zf zÞ

� �
Preh

2 z Pref h þ
4

z2 þ h2

� �
hz þ hzz þ

2

z
hz ¼ 0 ð21Þ

this system of partial differential equations is non-linear and elliptic. We also
note that these equations are parabolic in z when the last two terms of each
equation are neglected. Davis (1972) had exploited this fact to formulate an
efficient numerical solution for the problem.

Boundary conditions
At the wall: u = 0, v = 0, also the vorticity at the wall is unknown and is
determined by applying the stream function equation at the wall, whereas u = 1.
These conditions give

at h ¼ Re1=2 : f ¼ 0; f h ¼ 0; g ¼ f hh and

h ¼ 2 z2 þ h2
	 


=z
ð22Þ

At freestream: uniform flow with zero vorticity and u = 0. That is

as h!1 : f h ! 1; g ! 0 and h ! 0 ð23Þ

In order to evaluate the pressure along the body surface, the x 2 momentum
equation was applied at the wall. The result in parabolic variables (z,h ) is

›p

›z
¼ 2

ne

nf

›v

›h
ð24Þ

›p

›z
¼ 2

ne

nf

z

z2 þ h2
	 
 ›g

›h
2

2h

z2 þ h2
	 
 g

" #
ð25Þ

To remove the singularity of the pressure at the leading edge of the flat plate,
we follow Davis (1972) and introduce the following transformation. (The Stokes
solution near the nose of a parabola shows that the pressure (non-
dimensionalized by rU 2

1 is found to be 2Ah/(z2+h 2)+C.)

P ¼ p 2
h

z2 þ h2
	 
 g 0;Re1=2

� �
ð26Þ
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thus,

›P

›z
¼

ne

nf

z

z2 þ h2
	 
 ›g

›h
2

2h

z2 þ h2
	 
 g 2 goð Þ

" #
ð27Þ

where go ¼ gð0;Re1=2Þ. As opposed to ( p ), the function (P ) behaves properly
near z = 0 (Davis, 1972).

The local skin friction is defined as

Cf ¼
tw

rU 2
1

¼ 2vjw ð28Þ

Cf ¼
z

z2 þ h2
	 
 g z;Re1=2

� �
ð29Þ

The local Nusselt number is defined as

Nu ¼
hoD

kf

ð30Þ

where (ho) is the convective heat transfer coefficient, which is defined as

ho ¼ 2
ke

DT

›T

›y


w

ð31Þ

and (D ) is a dimensional reference length which can be equal in magnitude to
zmax. Also, it should be noted that the conductivity of the fluid appears
explicitly in the definition the Nusselt number, that is

Nu ¼ 2zmax
ke

kf

›u

›y


w

ð32Þ

Transforming the above equation into parabolic coordinates using equation
(17), then

NuðzÞ ¼
ke

kf

zmax
z

z2 þ h2
	 
2

zhh þ hwhz
� �

2
hw 3z2 2 h2

w

	 

z2 þ h2
	 
3

h

" #
ð33Þ

Numerical method of solution
For the present study, we use the finite difference technique to convert the
governing non-linear partial differential equations into a system of linear
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algebraic equations, as follows: using finite difference approximations (FDAs),
the governing non-linear partial differential equations (PDEs) are converted
into non-linear finite difference equations (FDEs). The finite difference scheme
is explained later in this section. The resulting non-linear FDEs are linearized
using Newton’s Linearization technique. As the unknown variables f, g and h
appeared in the coefficients matrix, iteration was required to solve the resulting
equations. The linear system is solved simultaneously by iteration using
“LINPACK ” subroutines (Dongarra et al., 1979). At each iteration, the solution
was found by solving the resulting system of linear algebraic equations
simultaneously. Defining the absolute difference in the solution between the
new (n+1) and old (n ) iterations as the “error” at iteration (n ), then convergence
was determined to occur when the maximum local error in f, g and h over all the
domain is , 10 2 5. As opposed to the numerical ADI-technique used by
Davis (1972), the technique used for this study is simple, however, it requires
large RAM computer facility. Therefore, this change in approach is a trade-off
between computing memory requirement and speed.

In order to start the numerical code and generate the physical and numerical
grids, Xmax in the physical plane and hmax in the numerical plane must be
supplied. Based on the study made by Haddad and Corke (1998) and on the
capacity of the computer available for this study, Xmax was chosen equal to
3.5 £ 105. Xmax should be very large owing to the use of viscous length scale
which is very small (x = x */(nf/U1)). In addition, Xmax should be large in order
to get to the far downstream boundary region where we expect Blasius flow to
be valid. For such a flow problem, large gradients in flow quantities occur near
the wall in the wall normal direction, and near the leading edge in the
streamwise direction. For this reason it is necessary to condense more grid
points at these locations. To do this, the original uniform grid is transformed to
another grid in which the grid points are clustered near the wall and near the
leading edge. The transformation used is the Robert’s stretching transform-
ation (Anderson et al., 1984). For this problem, there are four boundaries at
which boundary conditions have to be specified. Two of these are the wall and
freestream. The other two boundaries are the outflow boundaries on the upper
and lower sides of the body far downstream from the leading edge.

The governing system of equations and boundary conditions have been
discretized using a second order accurate (i.e. O(Dz 2), O(Dh 2)) finite difference
scheme on a non-uniform grid as follows.

. Interior points: all derivatives in z and h have been centrally finite
differenced.

. The upper and lower outflow boundaries: all derivatives in h have been
centrally finite differenced. All derivatives in z have been forward (at the
lower outflow boundary) or backward (at the upper outflow boundary)
finite differenced, as applied. Also the elliptic terms are neglected.
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. The wall and freestream boundaries: all derivatives in z have been
centrally finite differenced. All derivatives in h have been forward (at the
wall) or backward (at freestream) finite differenced, as applied.

Results and discussion
Solution independency
Extensive numerical test calculations were carried out to evaluate the effect of
grid size (i.e. number of grid points) on the obtained solution. Attention was
focused on the wall vorticity to judge the solution sensitivity. It is found that
the solution is more sensitive to the total number of grid points in the wall
normal direction (Jmax) than in the streamwise direction (Imax). Almost identical
results were obtained for the cases with Imax . 100 and Jmax . 39. Thus, a grid
size of 120 £ 49 was used throughout this study.

Pressure distribution
Using the pressure at downstream infinity as a boundary condition, the surface
pressure can be found by integrating from downstream infinity back along the
surface.

Equation (27) was integrated using the trapezoidal rule. Figure 2 shows the
pressure distribution along the surface for different parabolas in a non-porous
medium as a special case. The results are in excellent agreement with those of
Haddad et al. (2000). Figure 3 shows the effect of the porous medium on the
pressure distributions for the case Da = 2 £ 107, L = 0.4. It can be noted that
the porous medium decreases the local pressure. Physically, this is due to the
frictional drag and the form drag effect. The microscopic viscous shear stress
term (Darcy term) will produce the frictional drag and the microscopic inertial
force term will produce the form drag. The effect of Darcy number on the
pressure distribution is shown in Figure 4. The pressure decreases as the Darcy
number decreases, this is because smaller values of Darcy number lead to
larger bulk frictional resistance to the flow in the porous substrate.

The effect of the inertia parameter on the pressure distribution is illustrated
in Figure 5. As expected, the local pressure decreases as the inertia parameter
increases owing to the increase in the form drag. Note that the effect of Darcy
number is more significant on pressure distribution than the inertia parameter
effect, especially at low Reynolds number. However, at high Reynolds number,
the effect of the microscopic inertia term is more significant since this effect is
proportional to u 2 while the microscopic Darcy term is proportional to u.

Figure 6 shows the effect of Viscosity Ratio (VR) on the pressure
distribution. As the viscosity ratio increases the frictional drag increases. It is
worth mentioning here that the exact value of the viscosity ratio is not settled
yet in the literature. An extensive research is carried out to specify the value of
this ratio.
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Figure 3.
Surface pressure
distribution:
Da = 2 £ 107, L = 0.4
(Porous domain), VR = 1

Figure 2.
Surface pressure
distribution: L = 0.0
(clear domain)
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Figure 4.
The effect of Darcy
number on surface

pressure distribution:
L = 0.4, Re = 100,

VR = 1

Figure 5.
The effect of inertia

parameter on surface
pressure distribution:

Da = 2 £ 107, Re = 100,
VR = 1
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Skin friction distribution
The skin friction distribution for different parabolas in a clear domain is shown
in Figure 7. It can be noted that the result obtained agrees very well with those
obtained by Haddad et al. (2000). The effect of the porous medium on skin
friction distribution is similar to that on pressure distribution, as shown in
Figure 8. The effect of Darcy number on skin friction distribution is illustrated
in Figure 9. As expected the local skin friction coefficient at the wall decreases
as the Darcy number decreases. This in turn causes a lower velocity gradient at
the wall. To show clearly the effect of the inertia parameter (L) on skin friction,
a sample result taken from Figure 8 is redrawn for different values of L. This is
shown in Figure 10. As expected the skin friction decreases as the inertia
parameter increases. This is due to the increase in the form drag at the wall.
The effect of the viscosity ratio on skin friction distribution is shown in Figure
11. Note that the effect of the viscosity ratio is more significant on skin friction
distribution than on the pressure distribution.

Velocity distribution
Figure 12 shows the velocity profile far downstream from the leading edge
(i = 110) for the case Re = 0 (flat plate), Da = 2 £ 107, L = 0.4. It can be seen that

Figure 6.
The effect of viscosity
ratio (VR) on surface
pressure distribution:
Da = 2 £ 107, L = 0.4,
Re = 100
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Figure 7.
Skin friction

distribution: L = 0.0
(clear domain)

Figure 8.
Skin friction distribution:

Da = 2 £ 107, L = 0.4
(porous domain), VR = 1
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Figure 9.
The effect of Darcy
number on skin friction
distribution: L = 0.4,
Re = 100, VR = 1

Figure 10.
The effect of inertia
parameter on skin
friction distribution:
Da = 2 £ 107, Re = 100,
VR = 1
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Figure 11.
The effect of viscosity

ratio (VR) on skin friction
distribution:

Da = 2 £ 107, L = 0.4,
Re = 100

Figure 12.
Local velocity profile:

Re = 0 (flat plate),
Da = 2 £ 107, L = 0.4
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our results are in very good agreement with those of Kaviany (1987). Figure 13
shows the effect of Darcy number on the velocity profile close and away from
the leading edge (at i = 10 and 110). It can be noted that as Darcy number
decreases the velocity decreases, this is because the bulk frictional resistance to
the flow increases as the Darcy number decreases.

Similarly, Figure 14 shows the effect of the inertia parameter on the velocity
profile close and away from the leading edge. The decrease in the velocity
profile, due to the form drag resistance to the flow, increases as the inertia
parameter increases. It should be noted that the Darcy number has the greater
effect than the inertia parameter on the velocity profile. This is because the
frictional drag effect is bigger than the form drag effect.

Temperature distribution
The temperature profiles in the wall normal direction on a flat plate (Re = 0)
away from the leading edge for different values of Prandtl number are shown
in Figure 15. To check the thermal part of our solution, the corresponding
profiles presented by Schlichting (1979) are drawn in the same figure. Figure 16
shows the temperature profile away from the leading edge (i = 100) for the case
Re = 0 (flat plate) and Pr = 0.7 (air). To check our results we compare this

Figure 13.
The effect of Darcy
number on local velocity
distribution: L = 0.4,
Re = 100, VR = 1
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Figure 14.
The effect of inertia

parameter (L) on local
velocity distribution:

Da = 2 £ 107, Re = 100,
VR = 1

Figure 15.
Temperature profiles:

Re = 0 (flat plate)
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temperature profile with the one presented by Kaviany (1987). The two profiles
agree very well.

Nusselt number distribution
The Prandtl number effect. The Prandtl number effect on the Nusselt number

is shown in Figure 17 for the case Re = 100 (parabolic surface). In this figure,
the Nusselt number distribution along the surface is shown for a wide range of
Prandtl number. As expected, the Nusselt number increases with the increase
in Prandtl number. This is because the thermal boundary layer thickness
decreases and this in turn enhances the heat transfer. It should be noted that,
there is a peak in the curves before they start to asymptote downstream, this
might be related to the fact that at the leading edge the flow is a localized
accelerating stagnation point flow (Hiemenz flow). This is expected to enhance
the mixing action locally and thus, leads to higher Nusselt number.

The Darcy number effect. The effect of Darcy number on the Nusselt number
distribution is depicted in Figure 18 for kr = 1. The Nusselt number decreases
as the Darcy number decreases. This is because the presence of the porous
substrate and smaller value of Darcy number translate into smaller velocities
near the impermeable boundary, which in turn diminish the transfer of the

Figure 16.
Temperature profile vs
Kaviany result: Pr = 0.7,
Re = 0, VR = 1,
Da = 2 £ 107, L = 0.4
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Figure 17.
Effect of Prandtl number

on Nusselt number
distribution: Re = 100

(parabolic surface),
Da = 2 £ 107, L = 0.4,

VR = 1

Figure 18.
Effect of Darcy number

on Nusselt number
distribution: Pr = 1,
L = 0.4, Re = 100

(parabolic surface),
VR = 1
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convective energy. However, it is predicted that Nusselt number will increase
due to the increase in the effective thermal conductivity of the domain (for
kr @ 1).

The inertia parameter effect. The effect of inertia parameter on the Nusselt
number distribution is depicted in Figure 19. The larger the inertia parameter,
the larger will be the bulk form drag that the flow will experience. Therefore,
larger values of L would result in larger blowing effect through the porous
substrate, which would consequently create thicker boundary layer thickness
as well as a reduction in the friction coefficient and Nusselt number values.

Effect of the conductivity ratio. The effect of thermal conductivity ratio on
Nusselt number distribution is shown in Figure 20, for the case of Prandtl
number, Pr = 1, Da = 2 £ 107 and L = 0.4. As expected, an increase in the
conductivity ratio, ke=kf , results in an increase in the Nusselt number. This is
due to the enhancement in the conduction of heat from the wall to the fluid.

Conclusions
The results of this study point out a number of conclusions, which can be
summarized as follows.

(1) There is an excellent agreement between our results and those available
in the literature for both hydrodynamic and thermal parts of the
problem. This was obviously seen in the pressure, skin friction, velocity
and temperature distributions.

(2) Both pressure and skin friction decrease as Darcy number decreases.

(3) Both pressure and skin friction decrease as the inertia parameter
increases. Consequently the mass flow rate through the porous substrate
decreases. The porous substrate then creates thicker boundary layer and
leads to a reduced skin friction coefficient.

(4) As Darcy number decreases and the inertia parameter increases, the
velocity profile developed into Blasius profile farther away from the
leading edge. Hence, the velocity profile normal to the wall in the clear
domain case develops into Blasius profile faster than that in the porous
domain case.

(5) It has been shown that the porous substrate significantly reduces the
Nusselt number, and the main parameter in reducing the Nusselt number
was the Darcy number. On the other hand, the average Nusselt number
increases as Prandtl number increases.

(6) It is important to note that one can achieve high Nusselt number values
with the presence of a porous substrate. The determining parameter of
increasing or decreasing the Nusselt number is the conductivity ratio
ke=kf .
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Figure 19.
Effect of inertia

parameter on Nusselt
number distribution:

Pr = 1, Da = 2 £ 107,
Re = 100 (parabolic

surface), VR = 1

Figure 20.
Effect of the conductivity
ratio on Nusselt number

distribution: Pr = 1,
Da = 2 £ 107, L = 0.4,

Re = 100 (parabolic
surface), VR = 1

Simulation of
forced

convection flow
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